Wheat is responsible for half of global calories consumed either directly or as animal feed and we need to make a lot more of it in the coming decades. Now, an important paper marks a step change in how breeders might approach wheat breeding using previously untapped sources of variation to increase yields to meet demand. The recent paper, "Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential," first-authored by Dr Ryan Joynson of EI's Anthony Hall Group and Dr Gemma Molero of Matthew Reynold's team at CIMMYT, presents a valuable step forward for researchers interested in increasing wheat yield potential: a crucial task if we are to sustainably feed the planet. The research, funded through IWYP (International Wheat Yield Partnership) shines light on the role of radiation use efficiency (RUE, how sunlight is converted into plant mass) in increasing the yield potential of wheat: how we can increase plant biomass without sacrificing grain yield -- a major challenge.
This is Dr. Ryan Johnson in wheat field in Mexico. Photo Credit: Earlham Institute

(Source: Agriculture and Food News, ScienceDaily. www.sciencedaily.com)